Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study presents an experimental and numerical investigation to characterize the plume pattern of a high-aspect-ratio rectangular convergent/divergent nozzle with an aft deck in under-expanded conditions. The function of an aft deck is to shield the infrared signal of an exhaust plume at its strongest intensity located at the immediate downstream region of the nozzle exit. However, this practice may cause undesirable plume deflection, which needs to be reduced as much as possible. The nozzle pressure ratios ranged from 2 to 4, and the effect of the nozzle exit aspect ratio was examined using wall static pressure measurements and schlieren visualization for cold flows. The experimental setup involved a 3D-printed aft deck nozzle made of acrylonitrile butadiene styrene material, which underwent surface smoothing using acetone vapor. Numerical simulations were conducted using the commercial STARCCM$$^{\mathrm {+}}$$ + software to analyze static pressure ratio variations at the aft deck. The investigation revealed that a nozzle pressure ratio of 3 induced a downward plume deflection at aspect ratio values of 6.77 and 7.54, while an increased aspect ratio of 8.35 resulted in the horizontal ejection of the plume. Moreover, at an aspect ratio of 8.35, the plume was ejected horizontally for nozzle pressure ratios ranging from 2 to 4. At a nozzle pressure ratio of 4, the flow separated from the deck without reattaching, and the plume moved horizontally with minimal deflection. The findings suggest that a combination of a high aspect ratio and sufficiently high nozzle pressure ratio can effectively reduce plume deflection.
This study presents an experimental and numerical investigation to characterize the plume pattern of a high-aspect-ratio rectangular convergent/divergent nozzle with an aft deck in under-expanded conditions. The function of an aft deck is to shield the infrared signal of an exhaust plume at its strongest intensity located at the immediate downstream region of the nozzle exit. However, this practice may cause undesirable plume deflection, which needs to be reduced as much as possible. The nozzle pressure ratios ranged from 2 to 4, and the effect of the nozzle exit aspect ratio was examined using wall static pressure measurements and schlieren visualization for cold flows. The experimental setup involved a 3D-printed aft deck nozzle made of acrylonitrile butadiene styrene material, which underwent surface smoothing using acetone vapor. Numerical simulations were conducted using the commercial STARCCM$$^{\mathrm {+}}$$ + software to analyze static pressure ratio variations at the aft deck. The investigation revealed that a nozzle pressure ratio of 3 induced a downward plume deflection at aspect ratio values of 6.77 and 7.54, while an increased aspect ratio of 8.35 resulted in the horizontal ejection of the plume. Moreover, at an aspect ratio of 8.35, the plume was ejected horizontally for nozzle pressure ratios ranging from 2 to 4. At a nozzle pressure ratio of 4, the flow separated from the deck without reattaching, and the plume moved horizontally with minimal deflection. The findings suggest that a combination of a high aspect ratio and sufficiently high nozzle pressure ratio can effectively reduce plume deflection.
The problem of isentropic flow through an asymmetric two-dimensional convergent nozzle as a thrustvectoring device has been solved by the method of hodograph transformation coupled with finite-difference computation. With the given appropriate flow parameters, the solution was first established in the hodograph domain. The corresponding nozzle configuration and the flowfield properties were subsequently obtained through direct integration. The thrust-vectoring performance corresponding to specific nozzle geometries were also determined and presented. Experiments for specific nozzle configurations were also conducted to obtain pressure data along the nozzle walls for verification purposes. The numerical results were found to be in good agreement with the experimental data.
Nomenclatureof approaching uniform flow h E -thickness of asymtoptic uniform flow M = Mach number M* = Mach number based on critical sound speed p = pressure q = transformed velocity s = distance along nozzle wall T -thrust force V = velocity magnitude x,y = physical coordinates MU^L = upper and lower flap angles J3 -dimensionless flow angle 7 = specific heat ratio d = thrust angle 0 = flow angle p = density
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.