The most populated conformer of tetrahydrofuran (C(4)H(8)O) has been diagnosed as the Cs conformer in the present study, jointly using experimental electron momentum spectroscopy (EMS) and quantum mechanics. Our B3LYP/6-311++G** model indicates that the C1 conformation, which is one of the three possible conformations of tetrahydrofuran produced by pseudorotation in the gas phase, is a transition state due to its imaginary frequencies, in agreement with the prediction from a recent ab initio MP2/aug-cc-pVTZ study (J. Chem. Phys. 2005, 122, 204303). The study has identified the fingerprint of the highest occupied molecular orbital (HOMO) of the C(s) (12a') conformer as the most populated conformer. The identification of the C(s) structure, therefore, leads to the orbital-based assignment of the ionization binding energy spectra of tetrahydrofuran for the first time, on the basis of the outer valence Green function OVGF/6-31G* model and the density functional theory (DFT) SAOP/ET-PVQZ model. The present study explores an innovative approach to study molecular stabilities. It also indicates that energetic properties are not always the most appropriate means to study conformer-rich biological systems.