Particle Image Velocimetry (PIV) measurements have been carried out in order to analyze the structure of free surface vortices in a promoting geometry with two tangential inlets. Velocity fields associated to the free surface vortex have been obtained at different horizontal planes and Reynolds numbers. Average velocity fields have been calculated and tangential velocity profiles have been compared at different vortex stages and measurement planes. The results show that tangential flow is uniform along the vortex axis and it scales well with the average exit velocity. The tangential velocity profiles, in comparison to the potential behavior, show discrepancies especially at large distances from the vortex axis. Vorticity fields and circulation profiles have been also derived from the measured velocity fields and discussed. The circulation profiles increase along the vortex radius even at large distances from the vortex axis, so that the potential solution is not applicable at all. The comparison of tangential velocity and circulation profiles between promoted and free vortices, the last presented in a previous paper, shows that the tangential motion in a driven vortex is more intense and predominant over the sink effect (radial motion), except very close to the tank bottom, as in a forced configuration (i.e. rotating cylindrical tank).