Ti-17 titanium alloy was treated by laser shock processing (LSP) and the high-frequency fatigue properties were evaluated. The fatigue fracture and the microstructures were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). The result shows that the average fatigue life of the LSP sample increases 2.62 times at maximum stress 300 MPa under stress ratio is 0.1. The micro-hardness of the samples subjected to LSP increases 20 % compared with the basic material. The proliferation and tangles of dislocations of Ti-17 occurs and the density of dislocation increases after LSP treatment. The high dislocation density of LSP impacts changes the initiation of crack from corner to subsurface, and hinders the crack extension, thus increases the fatigue performance of the Ti-17.