In order to accurately establish the film thickness distribution model of a static spraying plane with air gun displacement, the film forming law and characteristics of the static spraying plane with air gun displacement were analyzed. The spray simulation model was established by the Euler–Euler method, and the spray process and film forming condition were calculated. The numerical simulation results show that oblique spraying has a large influence on the near-surface liquid velocity. With the increase in the spray angle, the droplets at the edge of the torch diffuse to the inclined direction, and the uniformity of the coating distribution becomes worse. Spraying height has a large influence on droplet trajectory. The coating thickness decreased significantly with the increase in spraying height, and the coating diffused in the air increased. With the increase in spraying height, the more obvious the droplet diffusion at the edge of the torch, the worse the uniformity quality of the coating. In order to ensure better spraying quality, the spraying height and angle should be controlled within a reasonable range at the same time. Spraying experiments verified the film forming law and characteristics of static spraying with gun displacement.