Lightning attachment to trees was studied based on 37 trees that were struck in Finland in summer 2007 and 2008. The type and severity of lightning damage was correlated with multiple parameters related to the flash, the meteorological characteristics of the strike time, and the surroundings of the tree. Damage was classified into three categories: bark-loss (minor), wood-loss (extensive), end explosive (complete loss of tree material). Four statistically significant parameters were found. The absolute value of the peak flash current is strongly correlated with damage; also, an indirect argument suggests that positive flashes cause more damage than negative flashes. The amount of damage is inversely correlated with the rainfall in the previous three hours, indicating that a wet ground and tree surface protect trees against damage by providing a conducting path to the ground. The ground type also has a weaker statistically significant effect, with poorly conducting ground leading to more extensive damage. Old and rotten trees are statistically most likely to experience explosive damage. Other parameters are inconclusive. The distribution of tree heights points to the possibility that the electrogeometric method does not necessarily predict the strike probability to a given tree. In many cases, the struck trees were clearly within the protective radius of a higher structure, although this is often difficult to determine from photographs. It is therefore suggested that models of lightning flashes to trees should include both the conductivity and height of the tree. The results may be significant for remote prediction of lightning damage, as well as for understanding lightning protection of structures which include trees.