Extension of service lives of critical machine components subjected to wear is possible through application of hardfacing alloys. In this work, two hardfacing alloys were produced based on the mass ratios of 2: 1: 1 and 7: 1.5: 1.5 for Fe: Mn: Cr by sand and open permanent mold casting processes, respectively. XRD analysis of both samples showed the prominent presence of (Mn, Cr)23C6, (Fe, Mn, Cr)7C3, Cr3C2, Fe3C2 and Fe4C carbides. Hӓgg carbide was prevalent in the SEM microstructural analysis of the sand cast sample, while cementite dominated the permanent mold cast sample. The average hardness values, impact energies absorbed and wear volumes of the samples produced with their respective charge mass ratios are 567 HV, 30 J and 0.131 cm 3 for 2: 1: 1 ratio and 592 HV, 29.5 J and 0.085 cm 3 for the 7: 1.5: 1.5 ratio. For service life applications as jaws, rolls, mantles, and concaves in crushers, the latter was recommended for manual metal arc welding to low carbon steel substrate because of its higher hardness, lower wear volume and cheaper alloy cost.