Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Underwater explosions are inherently complex and unique physical phenomena markedly distinct from those occurring above the surface. This distinctiveness is primarily attributed to the relatively incompressible nature of water, which fundamentally alters the propagation and impact of shock waves. The study of underwater explosions is paramount in applications such as underwater demolitions for construction and salvage operations. These applications require a comprehensive understanding in order to mitigate the disturbances’ impact on marine structures and ecosystems. Studying underwater explosions and their mitigation encompasses various disciplines, including fluid mechanics, materials science and structural engineering. The work reviewed in this study contributes significantly to enhancing safety measures in marine structures by providing critical insights into the behaviour of structures under extreme conditions. This includes understanding the behaviour of gas bubbles formed by explosions, the transmission of shock waves through different media and the resultant forces exerted on structures submerged in water. Consequently, this review is meant to aid in designing robust and resilient marine systems capable of withstanding severe loading conditions caused by underwater explosions by providing key engineering considerations. The continuous evolution of this research area is essential for advancing maritime technology, ensuring the safety of undersea operations and protecting marine environments from the adverse effects of extreme subaqueous loadings.
Underwater explosions are inherently complex and unique physical phenomena markedly distinct from those occurring above the surface. This distinctiveness is primarily attributed to the relatively incompressible nature of water, which fundamentally alters the propagation and impact of shock waves. The study of underwater explosions is paramount in applications such as underwater demolitions for construction and salvage operations. These applications require a comprehensive understanding in order to mitigate the disturbances’ impact on marine structures and ecosystems. Studying underwater explosions and their mitigation encompasses various disciplines, including fluid mechanics, materials science and structural engineering. The work reviewed in this study contributes significantly to enhancing safety measures in marine structures by providing critical insights into the behaviour of structures under extreme conditions. This includes understanding the behaviour of gas bubbles formed by explosions, the transmission of shock waves through different media and the resultant forces exerted on structures submerged in water. Consequently, this review is meant to aid in designing robust and resilient marine systems capable of withstanding severe loading conditions caused by underwater explosions by providing key engineering considerations. The continuous evolution of this research area is essential for advancing maritime technology, ensuring the safety of undersea operations and protecting marine environments from the adverse effects of extreme subaqueous loadings.
We present a novel solver for simulating compressible multi-fluid multiphase flow in underwater explosions (UNDEXs). The developed solver uses a modified version of Saurel's six-equation model, which includes an additional total mixture energy equation to resolve discrepancies in the thermodynamic states predicted under shock conditions. Additionally, we integrate a more precise stiffened gas equation of state (SG-EOS) that is determined using a novel method to enhance the accuracy of predicting experimental data based on a shock Hugoniot curve. We also propose a solution procedure using the modified Saurel's six-equation model on a three-dimensional (3D) structured Cartesian grid system. This involves discretizing the equation system using a Godunov scheme with a two-fluid Harten-Lax-van Leer-Contact approximate Riemann solver and a MUSCL-Hancock primitive scheme with total-variation-diminishing limiters, achieving a second-order extension. Both the dimensional splitting and fractional-step methods are utilized to model one-dimensional (1D) operators, splitting them into sequential operators. The modified model is validated for 1D and 3D problems, including the water–air shock tube, cavitation, shock–bubble interaction, and UNDEX problems in a free field, near a free surface, and near a rigid dam. Our simulations accurately predict the shockwave propagation, shock and free-surface interactions, cavitation evolution, and water jetting impact characteristics, exhibiting satisfactory agreement with those of previous studies. The proposed solver provides insight into the effects of UNDEXs on rigid structures, with potential applications in engineering and defense. The proposed method for determining the SG-EOS parameters can be applied to other areas of research involving high-pressure multi-phase flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.