The traditional cropping processes have some disadvantages, such as poor surface quality, low yield, the waste of materials, and high energy consumption. The low cycle fatigue precision cropping process with circumferential loading, which is a new type of precision cropping process, is studied. According to the stress concentration effect of the V-shape notch, the fatigue crack on the tip of the V-shape notch is prompted to initiate and extend. The working principle of the precision cropping machine is described. The criterion that whether the crack on the root of the V-shape notch is initiated or not is provided under the effect of low cycle fatigue loading. The materials which are 0.2%C steel, H59 copper, 0.45%C steel, 20Cr steel, and LY12 aluminum are tested under two control curves. The initiation and propagation of crack are accelerated and the good cross sections of the metal bar are obtained. The results show that the mean stress of the metal bar in the cropping process can be effectively reduced due to the stress concentration effect of the V-shape notch. The metal bar’s stable crack propagation and fracture can be obtained when constantly increasing striking displacement and reducing the striking frequency in the cropping process at the same time in the process.