The issues of the high-cycle fatigue resistance of notches and the role of non-propagating short cracks in defining the fatigue notch sensitivity and fatigue limit of the configuration are addressed. A fracture mechanics approach is employed to determine the threshold configuration that defines the associated fatigue limit. The influence of notch sharpness, notch size, intrinsic fatigue limit, microstructural dimensions, and the threshold for crack propagation is examined. A simple expression is proposed to estimate the maximum fatigue notch factor, kfMax, which incorporates the influence of these non-propagating cracks. The fatigue limits for both blunt and sharp elliptical notches are analyzed and predicted based on experimental results reported in the literature. Additionally, shallow notches or small defects are analyzed, where it is found that the same hypothesis may not be applicable.