In the present study, the surface composite Al359/Si3N4/Eggshell is prepared by friction stir processing (FSP). The effect of reinforced particle volume fraction on the microstructural and tribological properties of the Al359/Si3N4/Eggshell surface composites was investigated and compared with the friction stir processed (FSPed) Al359 alloy. The microstructural properties were further investigated by light microscopy, FESEM, and EDS mapping. The tribological properties of the developed composite and FSPed Al359 were investigated using a reciprocating ball-on-plate universal tribometer. The microstructural results showed that defect-free composite surfaces are produced due to improved physical properties, severe plastic deformation, and better grain refinement. Moreover, the mean value of the friction coefficient (µ) for the developed composite and FSPed alloy are 0.36 µ and 0.47 µ, respectively. The obtained results indicated that Si3N4/Eggshell is a promising reinforced particle for improving microstructural and tribological performance in journal bearing, rotors, and machinery applications.