2019
DOI: 10.1016/j.surfcoat.2019.04.068
|View full text |Cite
|
Sign up to set email alerts
|

Investigation on the microstructure and creep behavior of laser remelted thermal barrier coating

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
8
1

Relationship

2
7

Authors

Journals

citations
Cited by 17 publications
(8 citation statements)
references
References 39 publications
0
6
0
2
Order By: Relevance
“…Except for the microsized structures, their surfaces are comprised of volcanic microscopic aggregates due to the excessive ablation in Figure 8d. With increasing laser intensity, the width and depth of the melted layer increased, and the grain size of the melted layer became coarser due to the higher heat input [43][44][45][46]. Section 3.4 illustrated the detailed multiple physical procedures.…”
Section: Morphology Analysis Of the Cleaned Surfacesmentioning
confidence: 99%
“…Except for the microsized structures, their surfaces are comprised of volcanic microscopic aggregates due to the excessive ablation in Figure 8d. With increasing laser intensity, the width and depth of the melted layer increased, and the grain size of the melted layer became coarser due to the higher heat input [43][44][45][46]. Section 3.4 illustrated the detailed multiple physical procedures.…”
Section: Morphology Analysis Of the Cleaned Surfacesmentioning
confidence: 99%
“…Creep and creep-fatigue considerations are important in predicting the remaining life and safe inspection intervals as part of maintenance programs for components operating in harsh, high temperature environments. Creep deformation (primary, secondary, tertiary creep) and rupture is one of considerations that are involved in determining the risk of fracture in these structural components that experience harsh environments such as high temperatures and stresses are common in land-based steam and gas turbines, in aircraft engines, and in power-plant components 6,8,10,[25][26][27][28][29] .…”
Section: Introductionmentioning
confidence: 99%
“…pelo governo brasileiro, a utilização do aço maraging no passado não era possível, sendo necessárias outras soluções para a sua substituição como, por exemplo, o aço 300M que foi desenvolvido no Brasil para este propósito. Ainda que suas características mecânicas atendessem os requisitos para aplicação na indústria aeroespacial, estes aços não possuíam todas as vantagens do Maraging 300 por serem mais caros e de difícil processabilidade [2,3]. Com novas políticas de importações que viabilizaram a utilização do Maraging 300 em território nacional, o seu estudo se tornou de grande interesse para órgãos governamentais e empresas do ramo espacial, sendo assim, os estudos envolvendo este material que apresenta uma alta resistência mecânica sem perder sua maleabilidade, vêm sendo amplamente difundidos [4].…”
Section: Introductionunclassified