Investigations into out-of-domain performance of a two-step ATR based on a fusion of thermal and environmental data
Sophia P. Bragdon,
Vuong H. Truong,
Andrew C. Trautz
et al.
Abstract:Automatic target recognition (ATR) algorithms that rely on machine learning approaches are limited by the quality of the training dataset and the out-of-domain performance. The performance of a two-step ATR algorithm (ATR-EnvI) that on fusing thermal imagery with environmental data is investigated using thermal imagery containing buried and surface object collected in New Hampshire, Mississippi, Arizona, and Panama. An autoencoder neural network is used to encode the salient environmental conditions for a give… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.