Various noise sources limit the sensitivity of current interferometric gravitational wave detectors, including seismic noise, thermal noise of the optical components and suspension elements and photon shot noise. Plans are in place for a suite of hardware upgrades which should increase the sensitivity of these detectors by reducing the various noise sources. With these designs for 2nd generation detectors mature, techniques for further improvement of detector sensitivity by a factor of approximately 10 are under study. A particular challenge is the reduction of the thermal noise associated with the interferometer mirrors and their suspensions. We review the current status of research on thermal noise in interferometric gravitational wave detectors. Aspects of possible techniques for use in future '3rd generation detectors' such as cryogenics and diffractive optics are discussed