The study presents the application of FEM numerical analysis, performed with the Abaqus software [1], for theoretical estimation of the ultimate and critical shear and flexural resistance of corrugated web girders reinforced with tension diagonal braces. In FEM numerical models, different web failure modes, observed in physical experimental research into SIN girders were taken into consideration [2]. That was done depending on the inclination angle β of tension diagonal braces and the web thickness. FEM analysis of the shear resistance of corrugated web girders was performed using numerical models of girders. The webs, made from corrugated sheet, had the heights of 500, 1000 and 1500 mm, and the thicknesses of 2; 2.5 and 3 mm. Global shear and flexural load-displacement paths (LDPs) were determined for girder numerical models. In shear LDPs, the shares of cooperation between the corrugated web and tension diagonal braces were separated. For each numerical model, the estimates of the share of the corrugated web and diagonal braces in the shear resistance of SIN girders were produced. The results of the FEM numerical analysis of the resistance of corrugated web girders reinforced with tension diagonal braces were compared to the results of physical experimental research [2] into the girders of concern, and also with the results of calculations made for unreinforced girders acc. EC3 [19]. Conclusions were drawn and recommendations were produced, which can be applied to the construction and dimensioning of corrugated web girders reinforced with tension diagonal braces. The Abaqus software was adjusted to solve the problems related to the phenomena revealed by the research [2].