Essential oils (EOs) from Citrus sinensis (Rutaceae) possess diverse biological activities. However, a comprehensive comparison of their chemical composition and bioactivity across different plant parts has not been studied yet. The current research comparatively assesses the yield, chemical composition, chiral distribution, antioxidant properties, and larvicidal activity of EOs extracted from the peels, leaves, and flowers of C. sinensis. EOs extracted via hydro-distillation (HD) and steam distillation (SD) were analyzed by gas chromatography–mass spectrometry (GC-MS) and chiral GC-MS to explore their chemical composition and enantiomeric distribution. In addition, their larvicidal and antioxidant potentials were evaluated following standard protocols. Peels of C. sinensis exhibited significantly higher oil content (1.75–2.25%) compared to its leaves (0.75–0.78%) and flowers (0.20–0.25%). The GC-MS analysis identified around 60 compounds, including terpenoids, sesquiterpenoids, and oxygenated terpenoids in the HD and SD extractions. Higher concentrations of sabinene were found in flower extract (38.05–39.89%) and leaf extract (32.30–36.91%), while peel extract contained more than 90% limonene. The larvicidal activity of peel oil was primarily attributed to limonene, with an LC50 value of 0.0031 µL/mL. The current study reports the first chiral (GC-MS) analysis in the essential oil of the leaves and flowers of C. sinensis, paving the way for authenticity and purity. Furthermore, the chemical profiling of citrus EOs, particularly from the peel, demonstrates a safe and promising candidate for diverse biological applications.