2021
DOI: 10.1140/epjp/s13360-021-02270-6
|View full text |Cite
|
Sign up to set email alerts
|

Investigations of the physical behavior of novel polymorphs of indium phosphide from a first-principles perspective

Abstract: Polymorphism has been recognized as a useful tool to govern the behavior of solid materials for different technological applications. In this work, we present new polymorphs of Zinc-Blende (zb) Indium phosphide (InP) in Beryllium Oxide (β-BeO)-, Wurtzite (wz)-, and Silicon Carbide (SiC)-phases and explore their physical behavior from the first-principles perspective. These new polymorphs of InP exhibit hexagonal symmetry where the In 3+ and P 3− atoms exhibit tetrahedral coordination similar to zb-phase. The l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 65 publications
(74 reference statements)
0
1
0
Order By: Relevance
“…Over the past few decades, semiconductor materials have attracted substantial attention due to their remarkable physical properties, making them adaptable to many modern technological applications. Of this large family, group III nitrides, particularly AlN, are characterized by a high melting point, high thermal conductivity, good dielectric strength, high degree of hardness, and direct wide band gap. These characteristics make AlN a suitable material for microelectronic substrate applications, short-wavelength light-emitting diodes, laser diodes, and optical detectors, as well as for high-temperature, high-power, and high-frequency devices. Consequently, extensive research has been conducted to characterize, as precisely as possible, the essential optical and electronic properties of AlN, which are of primary importance, as well as its mechanical and structural response. In contrast to the zincblende (ZB), wurtzite (WZ), and rock salt (RS) phases, no comprehensive experimental or theoretical investigation has been conducted on the polytypism of AlN.…”
Section: Introductionmentioning
confidence: 99%
“…Over the past few decades, semiconductor materials have attracted substantial attention due to their remarkable physical properties, making them adaptable to many modern technological applications. Of this large family, group III nitrides, particularly AlN, are characterized by a high melting point, high thermal conductivity, good dielectric strength, high degree of hardness, and direct wide band gap. These characteristics make AlN a suitable material for microelectronic substrate applications, short-wavelength light-emitting diodes, laser diodes, and optical detectors, as well as for high-temperature, high-power, and high-frequency devices. Consequently, extensive research has been conducted to characterize, as precisely as possible, the essential optical and electronic properties of AlN, which are of primary importance, as well as its mechanical and structural response. In contrast to the zincblende (ZB), wurtzite (WZ), and rock salt (RS) phases, no comprehensive experimental or theoretical investigation has been conducted on the polytypism of AlN.…”
Section: Introductionmentioning
confidence: 99%