An experiment is described for the generation and detection of High-Frequency Gravitational Waves (HFGWs) in the laboratory utilizing a pair of tabletop X-ray lasers for generation and a coupling system of semitransparent, beam-splitting membranes with a pulsed Gaussian beam passing through a static magnetic field for detection. The laser axes are coplanar, their pulses are synchronized, and they are aligned in exactly opposite directions. They produce equal and opposite impulsive forces at the laser targets. Essentially, the X-ray lasers emulate a double-star orbit. Photons striking a target will produce a jerk (time rate of change of acceleration) and together with a computer controlled logic system will generate a HFGW spike each time the laser pulses are repeated. Specifications are tabulated for several different X-ray lasers. The focus or concentration point of the gravitational radiation generated by the X-ray laser pairs is located at the midpoint between the laser targets. The HFGW detecting system, proposed by Chongqing University, is situated at the HFGW focus. A High-Temperature Superconductor (HTSC) could might possibly concentrate the peak HFGW flux, potentially up to 4.93x10 24 Wm-2 (over a very small detection area). Such large HFGW fluxes may be suitable for future aerospace applications.