The corrosion resistance of stainless steels is massively influenced by the condition of their surface. The surface quality includes the topography of the surface, the structure and composition of the passive layer, and the surface near structure of the base material. These factors are influenced by final physical/chemical surface treatments. The presented work shows significantly lower corrosion resistance for mechanical machined specimens than for etched specimens. It also turns out that the rougher the surface, the lower the corrosion resistance gets. However, there is no general finding which shows if blasted or grinded surfaces are more appropriate, but a dependency on process parameters and the characteristics on corrosive exposure in terms of corrosion behavior. The results show that not only the surface roughness Ra has an influence on corrosion behavior but also the shape of peaks and valleys which are evolved by surface treatments. Imperfections in the base material, like sulfidic inclusions lead to a weaker passive layer, respectively, to a decrease of the corrosion resistance. By using special passivating techniques the corrosion resistance of stainless steels can be increased to a higher level in comparison to common passivation.