The main aim of the study was to reduce carbon emissions in the atmosphere using a novel Andropogon narudus (AN) biofuel using higher air temperatures and reducing the consumption of conventional fossil fuel (diesel). The use of a heat exchange chamber within the air intake manifold is a popular method to reduce hydrocarbon (HC) and carbon monoxide (CO) emissions during cold starts. A premixed charged compression ignition engine in the dual-fuel mode was used in this study with raw diesel, raw AN oil, AN70+D30, AN80+D20, AN80+D20 (35 °C), AN80+D20 (40 °C), and AN80+D20 (45 °C). A chamber was designed and analyzed to measure the exit temperature and density change and to determine the reduction in volumetric efficiency of the engine, using Ansys Fluent software. A sustainability assessment study was performed to understand the feasibility of the fuel and the design using the Pugh Matrix. The fuel AN80+D20 with an air temperature of 45 °C was found to be superior to all other fuels in terms of brake thermal efficiency, reaching at 32.1%. D100 used the least amount of energy, whereas AN80+D20 used the most. Engine HC emission was at the lowest (45.01 ppm) for AN80+D20 fuel at 45 °C air input and reached the highest (50 ppm) for AN100 fuel. With an air temperature of 45 °C, CO emission was at its lowest for AN80+D20 gasoline (0.018%) and was at its highest for AN100 (0.072%). Nitrogen oxide emissions were the highest for AN80+D20 fuel with an air temperature of 45 °C, with an air concentration of 1254 ppm, whereas they were the lowest for AN100 (900 ppm). CO 2 values were reduced, with D100 showing the lowest levels and AN100 showing the highest. The smoke emission was minimum for AN80+D20 fuel at 45 °C, with a smoke number of 15 compared to 33 for D100 fuel. As per the Pugh Matrix assessment, AN80+D20 with 35 °C air temperature had higher scores compared to all of the other fuel mixtures.