PurposeThis paper aims to investigate the impact of climate change news on the dynamics of US stock indices.Design/methodology/approachThe empirical basis of the study was 3,209 news articles. Sentiment analysis was performed by a pre-trained bidirectional FinBERT neural network. Thematic modeling is based on the neural network, BERTopic.FindingsThe results show that news sentiment can influence the dynamics of stock indices. In addition, five main news topics (finance and politics natural disasters and consequences industrial sector and Innovations activism and culture coronavirus pandemic) were identified, which showed a significant impact on the financial market.Originality/valueFirst, we extend the theoretical concepts. This study applies signaling theory and overreaction theory to the US stock market in the context of climate change. Second, in addition to the news sentiment, the impact of major news topics on US stock market returns is examined. Third, we examine the impact of sentimental and thematic news variables on US stock market indicators of economic sectors. Previous works reveal the impact of climate change news on specific sectors of the economy. This paper includes stock indices of the economic sectors most related to the topic of climate change. Fourth, the research methodology consists of modern algorithms. An advanced textual analysis method for sentiment classification is applied: a pre-trained bidirectional FinBERT neural network. Modern thematic modeling is carried out using a model based on the neural network, BERTopic. The most extensive topics are “finance and politics of climate change” and “natural disasters and consequences.”