Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Gas leakage detection is a critical concern in both industrial and residential settings, where real-time systems are essential for quickly identifying potential hazards and preventing dangerous incidents. Traditional detection systems often rely on centralized data processing, which can lead to delays and scalability issues. To overcome these limitations, in this study, we present a solution based on tiny machine learning (TinyML) to process data directly on devices. TinyML has the potential to execute machine learning algorithms locally, in real time, and using tiny devices, such as microcontrollers, ensuring faster and more efficient responses to potential dangers. Our approach combines an MLX90640 thermal camera with two optimized convolutional neural networks (CNNs), MobileNetV1 and EfficientNet-B0, deployed on the Arduino Nano 33 BLE Sense. The results show that our system not only provides real-time analytics but does so with high accuracy—88.92% for MobileNetV1 and 91.73% for EfficientNet-B0—while achieving inference times of 1414 milliseconds and using just 124.8 KB of memory. Compared to existing solutions, our edge-based system overcomes common challenges related to latency and scalability, making it a reliable, fast, and efficient option. This work demonstrates the potential for low-cost, scalable gas detection systems that can be deployed widely to enhance safety in various environments. By integrating cutting-edge machine learning models with affordable IoT devices, we aim to make safety more accessible, regardless of financial limitations, and pave the way for further innovation in environmental monitoring solutions.
Gas leakage detection is a critical concern in both industrial and residential settings, where real-time systems are essential for quickly identifying potential hazards and preventing dangerous incidents. Traditional detection systems often rely on centralized data processing, which can lead to delays and scalability issues. To overcome these limitations, in this study, we present a solution based on tiny machine learning (TinyML) to process data directly on devices. TinyML has the potential to execute machine learning algorithms locally, in real time, and using tiny devices, such as microcontrollers, ensuring faster and more efficient responses to potential dangers. Our approach combines an MLX90640 thermal camera with two optimized convolutional neural networks (CNNs), MobileNetV1 and EfficientNet-B0, deployed on the Arduino Nano 33 BLE Sense. The results show that our system not only provides real-time analytics but does so with high accuracy—88.92% for MobileNetV1 and 91.73% for EfficientNet-B0—while achieving inference times of 1414 milliseconds and using just 124.8 KB of memory. Compared to existing solutions, our edge-based system overcomes common challenges related to latency and scalability, making it a reliable, fast, and efficient option. This work demonstrates the potential for low-cost, scalable gas detection systems that can be deployed widely to enhance safety in various environments. By integrating cutting-edge machine learning models with affordable IoT devices, we aim to make safety more accessible, regardless of financial limitations, and pave the way for further innovation in environmental monitoring solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.