The image enhancement for the natural images is the vast field where the quality of the images degrades based on the capturing and processing methods employed by the capturing devices. Based on noise type and estimation of noise, filter need to be adopted for enhancing the quality of the image. In the same manner, the medical field also needs some filtering mechanism to reduce the noise and detection of the disease based on the clarity of the image captured; in accordance with it, the preprocessing steps play a vital role to reduce the burden on the radiologist to make the decision on presence of disease. Based on the estimated noise and its type, the filters are selected to delete the unwanted signals from the image. Hence, identifying noise types and denoising play an important role in image analysis. The proposed framework addresses the noise estimation and filtering process to obtain the enhanced images. This paper estimates and detects the noise types, namely Gaussian, motion artifacts, Poisson, salt-andpepper, and speckle noises. Noise is estimated by using discrete wavelet transformation (DWT). This separates the image into quadruple sub-bands. Noise and HH sub-band are high-frequency components. HH sub-band also has vertical edges. These vertical edges are removed by performing Hadamard operation on downsampled Sobel edge-detected image and HH sub-band. Using HH sub-band after removing vertical edges is considered for estimating the noise. The Rician energy equation is used to estimate the noise. This is given as input for Artificial Neural Network to improve the estimated noise level. For identifying noise type, CNN is used. After removing vertical edges, the HH sub-band is given to the CNN model for classification. The classification accuracy results of identifying noise type are 100% on natural images and 96.3% on medical images.