Background: Lung cancer screening with low-dose helical computed tomography (LDCT) reduces mortality in high-risk subjects. Cigarette smoking is linked to up to 90% of lung cancer deaths. Even more so, it is a key risk factor for many other cancers and cardiovascular and pulmonary diseases. The Smokers health Multiple ACtions (SMAC-1) trial aimed to demonstrate the feasibility and effectiveness of an integrated program based on the early detection of smoking-related thoraco-cardiovascular diseases in high-risk subjects, combined with primary prevention. A new multi-component screening design was utilized to strengthen the framework on conventional lung cancer screening programs. We report here the study design and the results from our baseline round, focusing on oncological findings. Methods: High-risk subjects were defined as being >55 years of age and active smokers or formers who had quit within 15 years (>30 pack/y). A PLCOm2012 threshold >2% was chosen. Subject outreach was streamlined through media campaign and general practitioners’ engagement. Eligible subjects, upon written informed consent, underwent a psychology consultation, blood sample collection, self-evaluation questionnaire, spirometry, and LDCT scan. Blood samples were analyzed for pentraxin-3 protein levels, interleukins, microRNA, and circulating tumor cells. Cardiovascular risk assessment and coronary artery calcium (CAC) scoring were performed. Direct and indirect costs were analyzed focusing on the incremental cost-effectiveness ratio per quality-adjusted life years gained in different scenarios. Personalized screening time-intervals were determined using the “Maisonneuve risk re-calculation model”, and a threshold <0.6% was chosen for the biennial round. Results: In total, 3228 subjects were willing to be enrolled. Out of 1654 eligible subjects, 1112 participated. The mean age was 64 years (M/F 62/38%), with a mean PLCOm2012 of 5.6%. Former and active smokers represented 23% and 77% of the subjects, respectively. At least one nodule was identified in 348 subjects. LDCTs showed no clinically significant findings in 762 subjects (69%); thus, they were referred for annual/biennial LDCTs based on the Maisonneuve risk (mean value = 0.44%). Lung nodule active surveillance was indicated for 122 subjects (11%). Forty-four subjects with baseline suspicious nodules underwent a PET-FDG and twenty-seven a CT-guided lung biopsy. Finally, a total of 32 cancers were diagnosed, of which 30 were lung cancers (2.7%) and 2 were extrapulmonary cancers (malignant pleural mesothelioma and thymoma). Finally, 25 subjects underwent lung surgery (2.25%). Importantly, there were zero false positives and two false negatives with CT-guided biopsy, of which the patients were operated on with no stage shift. The final pathology included lung adenocarcinomas (69%), squamous cell carcinomas (10%), and others (21%). Pathological staging showed 14 stage I (47%) and 16 stage II-IV (53%) cancers. Conclusions: LDCTs continue to confirm their efficacy in safely detecting early-stage lung cancer in high-risk subjects, with a negligible risk of false-positive results. Re-calculating the risk of developing lung cancer after baseline LDCTs with the Maisonneuve model allows us to optimize time intervals to subsequent screening. The Smokers health Multiple ACtions (SMAC-1) trial offers solid support for policy assessments by policymakers. We trust that this will help in developing guidelines for the large-scale implementation of lung cancer screening, paving the way for better outcomes for lung cancer patients.