2013
DOI: 10.4153/cmb-2011-178-2
|View full text |Cite
|
Sign up to set email alerts
|

Involutions and Anticommutativity in Group Rings

Abstract: Abstract. Let g → g * denote an involution on a group G. For any (commutative, associative) ring R (with 1), * extends linearly to an involution of the group ring RG. An element α ∈ RG is symmetric if α * = α and skew-symmetric if α * = −α. The skew-symmetric elements are closed under the Lie bracket, [α, β] = αβ − βα. In this paper, we investigate when this set is also closed under the ring product in RG. The symmetric elements are closed under the Jordan product, α • β = αβ + βα. Here, we determine when this… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
2
0
2

Year Published

2013
2013
2020
2020

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 20 publications
0
2
0
2
Order By: Relevance
“…Theorem 2.1 (Theorem 2.2, [GP13a]). Let G be a group with involution * and let R be a ring of char(R) = 2.…”
Section: Skew-symmetric Elements Anticommutementioning
confidence: 99%
See 1 more Smart Citation
“…Theorem 2.1 (Theorem 2.2, [GP13a]). Let G be a group with involution * and let R be a ring of char(R) = 2.…”
Section: Skew-symmetric Elements Anticommutementioning
confidence: 99%
“…In the same way, we collect the symmetric elements, r ∈ R such that r * = r, in the set (RG) + . Many papers classify the group rings in which these sets, defined with the linear extention of a group involution, satisfy a polinomial identity, see [BJPM09,GP13a,JM06,LSS09], and when a polinomial identity satisfied in these sets could be lifted to the entire group ring, see [GPS09].…”
Section: Introductionmentioning
confidence: 99%
“…B. Cristo respondeu ao primeiro questionamento para o caso da involução natural g ↦ g −1 de G, isto é, no seu artigo, caracteriza-se os grupos G para os quais os elementos simétricos de RG comutam entre si. Já em [7], E. G. Goodaire e C. Polcino Milies conseguiram responder ao segundo questionamento para uma involução g ↦ g * .…”
Section: Introductionunclassified
“…No artigo [7], que nos serviu como referência para escrever o Capítulo 3, os professores E. G. Godaire e C. Polcino Milies, responderam quando é que (RG) + é anticomutativo. Já adiantamos que todos os capítulos foram escritos utilizando como referência artigos escritos em conjunto por estes dois autores.…”
Section: Introductionunclassified