In the absence of indomethacin, anandamide did not contract the guinea‐pig bronchus at concentrations up to 100 μM. In the presence of indomethacin (10 μM), anandamide induced concentration‐related contractions with a pEC50 value of 5.18±0.11. It was significantly less potent than capsaicin (pEC50 7.01±0.1). The anandamide uptake inhibitor AM404, produced only a 14.1±3.22% contraction at 100 μM. All experiments were conducted in the presence of PMSF (20 μM).
The vanilloid receptor antagonist, capsazepine (10 μM), significantly attenuated the contractile effect of anandamide, the response to 100 μM anandamide being 40.53±7.04% in the presence of vehicle and 1.57±8.93% in the presence of 10 μM capsazepine. The contractile actions of anandamide and AM404 were markedly enhanced by the peptidase inhibitor thiorphan.
The log concentration‐response curve of anandamide was unaltered by the CB1 receptor antagonist, SR141716A. The pEC50 values for anandamide were 4.88±0.08 and 5.17±0.19 in the presence of vehicle and SR141716A (1 μM) respectively.
The lipoxygenase inhibitors 5,8,11,14‐eicosatetraynoic acid (ETYA) and 5,8,11 eicosatriynoic acid (ETI) reduced the effect of 100 μM anandamide from 34.7±1.9% (vehicle) to 7.7±5% (ETYA, 10 μM) and from 41.85±4.25% (n=6) (vehicle) to 10.31±3.54 (n=6) (ETI, 20 μM). Neither inhibitor significantly affected contraction of the tissue by substance P.
This study provides evidence that anandamide acts on vanilloid receptors in the guinea‐pig isolated bronchus. These data raise the possibility that the contractile action of anandamide may be due, at least in part, to lipoxygenase metabolites of this fatty acid amide that are vanilloid receptor agonists.
British Journal of Pharmacology (2001) 134, 30–37; doi: