In receptor-type transcription factors-mediated cytochrome P450 (P450)s induction, few studies have attempted to clarify the roles of protein kinase N (PKN) in the transcriptional regulation of P450s. This study aimed to examine the involvement of PKN in the transcriptional regulation of P450s by receptor-type transcription factors, including the aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor. The mRNA and protein levels, and metabolic activity, of P450s in the livers of wild-type (WT) and double-mutant (D) mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations [PKN1 T778A/T778A ; PKN3 −/− ] were determined following treatment with activators for receptor-type transcription factors. mRNA and protein levels, and metabolic activity, of CYP2B10 were significantly higher in D mice treated with the CAR activator phenobarbital (PB), but not with 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene, compared with WT mice. We examined the CAR-dependent pathway regulated by PKN following PB treatment, because the extent of CYP2B10 induction in WT and D mice was notably different in response to treatment with different CAR activators. The mRNA levels of Cyp2b10 in primary hepatocytes from WT and D mice treated with PB alone or in combination with SKI-1 (a Src inhibitor), or U0126 (a This article has not been copyedited and formatted. The final version may differ from this version.