Treatment with glucocorticoids increases the concentration of plasma high-density lipoprotein (HDL), which is inversely correlated to the development of atherosclerosis. Previously, we demonstrated that repeated administration of glucocorticoids increases apolipoprotein (apo) A-I gene expression and decreases apoA-I1 gene expression in rat liver. In the present study, the mechanism of glucocorticoid action on hepatic apoA-I and apoA-I1 expression was studied. A single injection of rats with dexamethasone increased hepatic apoA-I mRNA levels within 6 h and further increases were observed after 12 h and 24 h. In contrast, liver apoA-I1 mRNA levels gradually decreased after dexamethasone treatment to less than 25 % control levels after 24 h. In rat primary hepatocytes and McARH8994 hepatoma cells, addition of dexamethasone increased apoA-I mRNA levels in a time-dependent and dose-dependent manner, whereas apoA-I1 mRNA levels were unchanged. Simultaneous addition of the glucocorticoid antagonist RU486 prevented the increase in apoA-I mRNA levels after dexamethasone treatment, which suggests that the effects of dexamethasone are mediated through the glucocorticoid receptor. Inhibition of transcription by actinomycin D and nuclear-run-on experiments in McARH8994 cells and primary hepatocytes showed that dexamethasone induced apoA-I, but not apoA-11, gene transcription. Transient-transfection assays in McARH8994 cells with a chloramphenicol acetyl transferase vector driven by the rat-apoA-1-gene promoter demonstrated that the proximal apoA-I promoter could be induced by dexamethasone, and this effect could be abolished by simultaneous treatment with RU486. However, in COS-1 cells, apoA-I promoter transcription was not induced by dexamethasone or cotransfected glucocorticoid receptor. In addition, the induction of apoA-I gene transcription by dexamethasone was blocked by the protein-synthesis inhibitor cycloheximide, which suggests the presence of a labile protein involved in apoA-I gene activation by dexamethasone. In conclusion, our results demonstrate that dexamethasone regulates rat apoA-I, but not apoA-11, gene expression through direct action on the hepatocyte. The induction of apoA-I gene transcription by dexamethasone requires the glucocorticoid receptor and a labile cell-specific protein.Keywords: apolipoprotein ; liver; gene expression; corticosteroid hormone.High plasma concentrations of high-density lipoprotein (HDL) cholesterol are inversely related to the incidence of atherosclerosis [I, 21. The major protein constituents of HDL are apolipoprotein (apo) A-I and apoA-11. Epidemiological studies suggested that the protective effect of HDL on atherosclerosis development is correlated to specific particles within HDL that contain apoA-I but not apoA-11, rather than particles that contain apoA-I and apoA-11 [3]. Furthermore, studies in transgenic animals indicated that overexpression of human apoA-I confers resistance to early atherogenesis [4], whereas overexpression of apoA-I1 results in less protection and m...