The two-component system TCS08 is one of the regulatory systems that is important for virulence of Streptococcus pneumoniae. In order to investigate the TCS08 regulon, we have analyzed transcription profiles of mutants derived from S. pneumoniae R6 by microarray analysis. Since deletion mutants are often without a significant phenotype, we constructed a mutation in the histidine kinase HK08, T133P, in analogy to the phosphatase mutation T230P in the H box of the S. pneumoniae CiaH kinase described recently (D. Zähner, K. Kaminski, M. van der Linden, T. Mascher, M. Merai, and R. Hakenbeck, J. Mol. Microbiol. Biotechnol. 4:211-216, 2002). In addition, a deletion mutation was constructed in rr08, encoding the cognate response regulator. The most heavily suppressed genes in the hk08 mutant were spr0276 to spr0282, encoding a putative cellobiose phosphoenolpyruvate sugar phosphotransferase system (PTS). Whereas the R6 Sm r parent strain and the ⌬rr08 mutant readily grew on cellobiose, the hk08 mutant and selected mutants with deletions in the PTS cluster did not, strongly suggesting that TCS08 is involved in the catabolism of cellobiose. Homologues of the TCS08 system were found in closely related streptococci and other gram-positive cocci. However, the genes spr0276 to spr0282, encoding the putative cellobiose PTS, represent a genomic island in S. pneumoniae and homologues were found in Streptococcus gordonii only, suggesting that this system might contribute to the pathogenicity potential of the pneumococcus.