Concerns about resistance development to conventional insecticides in diamondback moth (DBM) Plutella xylostella (L.), the most destructive pest of Brassica vegetables, have stimulated interest in alternative pest management strategies. The toxicity of Bacillus thuringiensis subsp. aizawai (Bt GO33A) combined with chlorantraniliprole (Chl) has not been documented. Here, we examined single and combined toxicity of chlorantraniliprole and Bt to assess the levels of resistance in four DBM strains. Additionally, enzyme activities were tested in field-original highly resistant (FOH-DBM), Bt-resistant (Bt-DBM), chlorantraniliprole-resistant (CL-DBM), and Bt + chlorantraniliprole-resistant (BtC-DBM) strains. The Bt product had the highest toxicity to all four DBM strains followed by the mixture of insecticides (Bt + Chl) and chlorantraniliprole. Synergism between Bt and chlorantraniliprole was observed; the combination of Bt + (Bt + Chl) (1:1, LC50:LC50) was the most toxic, showing a synergistic effect against all four DBM strains with a poison ratio of 1.35, 1.29, 1.27, and 1.25. Glutathione S-transferase (GST) and carboxyl-esterase (CarE) activities showed positive correlations with chlorantraniliprole resistance, but no correlation was observed with resistance to Bt and Bt + Chl insecticides. Expression of genes coding for PxGST, CarE, AChE, and MFO using qRT-PCR showed that the PxGST and MFO were significantly overexpressed in Bt-DBM. However, AChE and CarE showed no difference in the four DBM strains. Mixtures of Bt with chlorantraniliprole exhibited synergistic effects and may aid the design of new combinations of pesticides to delay resistance in DBM strains substantially.