Chondrosarcomas are malignant cartilage-forming tumors of bone which exhibit resistance to both chemotherapy and radiation treatment. miRNAs have been well demonstrated to regulate gene expression and play essential roles in a variety of biological processes, including proliferation, differentiation, migration, cell cycling and apoptosis. In this study, we obtained evidence that miR-100 acts as a tumor suppressor in human chondrosarcomas. Interestingly, cisplatin resistant chondrosarcoma cells exhibit decreased expression of miR-100 compared with parental cells. In addition, we identified mTOR as a direct target of miR-100. Overexpression of miR-100 complementary pairs to the 3' untranslated region (UTR) of mTOR, resulted in sensitization of cisplatin resistant cells to cisplatin. Moreover, recovery of the mTOR pathway by overexpression of S6K desensitized the chondrosarcoma cells to cisplatin, suggesting the miR-100-mediated sensitization to cisplatin dependent on inhibition of mTOR. In summary, the present studies highlight miR-100 as a tumor suppressor in chondrosarcoma contributing to anti-chemoresistance. Overexpression of miR-100 might be exploited as a therapeutic strategy along with cisplatin-based combined chemotherapy for the treatment of clinical chondrosarcoma patients.