Inwardly rotating spirals (IRSs) have attracted great attention since their observation in an oscillatory reaction-diffusion system. However, IRSs have not yet been reported in planar excitable media. In the present work we investigate rotating waves in a nonuniform excitable medium, consisting of an inner disk part surrounded by an outer ring part with different excitabilities, by numerical simulations of a simple FitzHugh-Nagumo model. Depending on the excitability of the medium as well as the inhomogeneity, we find the occurrence of IRSs, of which the excitation propagates inwardly to the geometrical spiral tip.