Oriented immobilization of antibodies is important for the effective recognition of target antigens. In this paper, a heptapeptide ligand, HWRGWVC (HC7), was modified onto non-porous monosized poly(glyceryl methacrylate) (pGMA) microspheres (named pGMA-HC7) to explore the antibody immobilization behaviors. Characterization of the microspheres by particle size analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy, and reversed-phase chromatography proved the success of each fabrication step. The capacity and activity of antibody immobilization through HC7 were studied using immunoglobulin G (IgG) as a model antibody and horseradish peroxidase (HRP) as a model antigen. Additionally, IgG immobilizations on pGMA microspheres by nonspecific adsorption and covalent coupling through carbodiimide chemistry were conducted for comparison. pGMA-HC7 exhibited an IgG adsorption capacity of 3-4 mg/g in 10 min by the specific binding of HC7 without nonspecific interactions. Notably, the ligand HC7 showed a by two orders of magnitude stronger affinity for IgG than its original hexapeptide ligand HWRGWV. Moreover, the capacity and activity of the immobilized anti-HRP antibody on pGMA-HC7 were 1.6-fold and 3-fold higher than those of the covalent coupling, respectively. The results proved the superior role of HWRGWVC in the affinity binding of antibody and the potential of pGMA-HC7-25 in immunoassay and immunodiagnostic applications.