nanoelectronic devices with the effect of resistive switching, which consists in a reversible change of resistance in response to electrical stimulation [5] and is identified with the memristive effect. [6] Despite the significant progress in understanding of the memristive effect and approaching maturity of the technology of resistiveswitching devices over the last 10 years, there are still a number of fundamental problems to solve.A key problem on the way of using resistive-switching devices as programmable elements in memory devices and mixed analog-digital processors of new generation is the variability of resistive switching parameters inherent to memristive thin-film devices. [7] Achieving stable switching between the nonlinear resistive states is also an important task on the way to implementing large passive crossbar arrays of memristors and solving the problem of leakage currents in them. [8,9] Metal-oxide memristive devices are most compatible with the traditional complementary metal oxide semiconductor (CMOS) process and exhibit a valence change memory effect. [10] The variation of switching parameters in such devices is caused by the stochastic nature of migration of oxygen ions and/or vacancies responsible for the local oxidation and recovery of conductive channels (filaments) and is accompanied by the degradation of switching parameters in the case of uncontrolled oxygen exchange between the dielectric and electrode materials.The traditional approaches to control the reproducibility of resistive switching include the formation of special electric field concentrators [11][12][13] and appropriate selection of materials/interfaces in memristive device structure. In the latter case, bilayer or multilayer structures are formed, in which the switching oxide alternates with a barrier/buffer layer (layers) to control the migration of oxygen vacancies, [14,15] with a layer of low dielectric constant [16,17] to obtain nonlinear currentvoltage (I-V) characteristics, or with a layer of higher/lower thermal conductivity [18,19] for the removal/retention of heat in the switching area and to achieve analog switching character. To tune the resistive states with given accuracy, regardless of