<div>
<p>Phospholipid bilayer membranes show promise as biomolecular
soft materials that mimic the ability of living systems to sense, respond and
learn but are fragile. Amphiphilic charged oligomers
(oligodimethylsiloxane-methylimidazolium cation, ODMS-MIM<sup>(+)</sup>),
assembled into bilayers at the oil-aqueous interfaces of droplet interface
bilayers (DIBs), possessed similar size and functionality as phospholipid bilayers,
but were stable. The ionic liquid headgroups (MIM<sup>(+)</sup>) of the
oligomers were covalently bound to short-chain hydrophobic tails (ODMS).
Bilayer self-assembly was influenced both by the charged headgroups,
constrained to two-dimensional diffusion at the liquid-liquid interface, which formed
electric double layers in the aqueous phase, and the tails in the organic phase.
Bilayers formed spontaneously at low ionic strength but required an external
voltage to form at higher ionicities. This switch in assembly behavior was due
to ion-pairing of the MIM<sup>(+)</sup> headgroups with chloride ions, resulting
in an increase in the density of the charged headgroups at the interface and
the ODMS hydrophobic tails in the oil phase as they were covalently grafted to
the headgroups. <a>Chain overlap led to repulsive
disjoining pressures between droplets due to osmotic stress</a>. The applied
voltage caused an attractive electrocompressive stress that overcame the
repulsion, enabling bilayer formation. <a>Bilayer assembly
at high ionic strength, while requiring a voltage to initiate, was
irreversible, and the resulting membrane was considerably more stable than
those formed at lower values of the ionic strength</a>. This switching of
assembly behavior can be exploited as an additional mechanism for short-term
synaptic plasticity in neuromorphic device applications using soft materials.</p>
</div>