In this study, Random SubSpace-based classification and regression tree (RSCART) was introduced for landslide susceptibility modeling, and CART model and logistic regression (LR) model were used as benchmark models. 263 landslide locations in the study area were randomly divided into two parts (70/30) for training and validation of models. 14 landslide influencing factors were selected, such as slope angle, elevation, aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to road, soil, normalized difference vegetation index (NDVI), land use, and lithology. Finally, the hybrid RSCART model and two benchmark models were applied for landslide susceptibility modeling and the receiver operating characteristic curve method is used to evaluate the performance of the model. The susceptibility is quantitatively compared based on each pixel to reveal the system spatial pattern between susceptibility maps. At the same time, area under ROC curve (AUC) and landslide density analysis were used to estimate the prediction ability of landslide susceptibility map. The results showed that the RSCART model is the optimal model with the highest AUC values of 0.852 and 0.827, followed by LR and CART models. The results also illustrate that the hybrid model generally improves the prediction ability of a single landslide susceptibility model.Water 2020, 12, 113 2 of 29 weights of evidence [10][11][12], frequency ratio [13][14][15][16][17], logistic regression [18][19][20][21], linear multivariate regression, multivariate adaptive regression spline [22][23][24], and statistical index [25,26] have been widely used. However, these traditional statistical methods do not provide satisfactory evaluation of the correlation between landslide influencing factors [4,27].Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34][35][36], support vector machine [37][38][39], artificial neural networks [40,41], and random forest [4,[42][43][44][45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48], bagging-based reduced error pruning trees [49], and multiboost-based support vector machines [50].Spatial prediction of landslide is not only the first important step, but also one of the most difficult tasks [31,51]. Many modeling methods have been used in the construction of landslide susceptibility maps in the past, but the accuracy of these models has not been accepted by all researchers [52]. Youssef et al. used CART model to study landslide susceptibility in Wadi Tayyah Basin. The result of post-cart model is not optimal [53]. However, when Felicísimo et al. studied the landslide susceptibility, CART shows...