“…C e λ∥ψ∥ ∞ (e λ∥ψ∥ ∞ − 1)3 . Combining (B.4) and (B.8), for all λ ⩾ λ 0 , for all s ⩾ s 0 (λ) := max(s 1 , e C1T ) we obtainˆQ |u(x)| φ 0 (x, t) 2 e −2sη0(x,t) dx dt = |u(x)| |ω| 2 (x, t)dx dt ⩽ ˆΩ ˆIεs |u(x)| ω 2 (x, t)dx dt + 2 ˆΩ ˆ(0, T 2 )\Iε s |u(x)| ω 2 (x, t)dx dt ⩽ ˆΩ |u(x)| 2εsφ 2 0 (x, t 0 ) + T C0 ln(s) 2 e −2sη0(x,t0) dx ⩽ ˆΩ |u(x)| ln(s) 2e −2sη0(x,t0) dx ⩽ C1 (λ) ln(s) ˆΩ |u(x)| e −2sη0(x,t0) dx, (B.9)where C1 (λ) := 1 + 2e 2λ∥ψ∥ ∞ t Which completes the proof.…”