In this paper, we have introduced a prototype of a fish robot driven by unimorph piezoceramic actuators. To improve the swimming performance of the fish robot in terms of tail-beat angle, swimming speed, and thrust force, we used four light-weight piezo-composite actuators (LIPCAs) instead of the two LIPCAs used in the previous model. We also developed a new actuation mechanism consisting of links and gears. Performance tests of the fish robot were conducted in water at various tail-beat frequencies to measure the tail-beat angle, swimming speed, and thrust force. The tail-beat angle was significantly better than that of the previous model. The best tail-beat frequency of the fish robot was 1.4 Hz and the maximum thrust force was 0.0048 N. A miniaturized power supply, which was developed to excite the LIPCAs, was installed inside the fish robot body for free swimming. The maximum free-swimming speed was 3.2 cm/s.