Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A highly energetic photon is emitted via nonlinear inverse Compton scattering after an electron undergoes scattering with an ultra-intense relativistic laser pulse. In the laser-nanostructured interaction, gamma photons are emitted in different directions due to different electron heating mechanisms. However, the physics that leads to such gamma-photon emission directionality still requires further understanding. This paper shows that ∼53% of the photons emitted from the nanowires fall into the forward-directed cone, with ∼21% of the backward-emitted photons. Using the two-dimensional particle-in-cell simulations, we found that the backward-emitted photons are mainly ascribed to the j × B heating and reflux electrons. The direction of photon emission from the nanowire tip is in the direction of the ponderomotive force. Furthermore, we also demonstrate that the nanowire target attached to the supporting substrate helps to enhance forward photon emission and reduce emission from reflux electrons. Understanding the correlation between the laser heating mechanisms and the directionality of photon emission could provide insights into the generation of collimated gamma rays using nanowire targets for various applications.
A highly energetic photon is emitted via nonlinear inverse Compton scattering after an electron undergoes scattering with an ultra-intense relativistic laser pulse. In the laser-nanostructured interaction, gamma photons are emitted in different directions due to different electron heating mechanisms. However, the physics that leads to such gamma-photon emission directionality still requires further understanding. This paper shows that ∼53% of the photons emitted from the nanowires fall into the forward-directed cone, with ∼21% of the backward-emitted photons. Using the two-dimensional particle-in-cell simulations, we found that the backward-emitted photons are mainly ascribed to the j × B heating and reflux electrons. The direction of photon emission from the nanowire tip is in the direction of the ponderomotive force. Furthermore, we also demonstrate that the nanowire target attached to the supporting substrate helps to enhance forward photon emission and reduce emission from reflux electrons. Understanding the correlation between the laser heating mechanisms and the directionality of photon emission could provide insights into the generation of collimated gamma rays using nanowire targets for various applications.
Accelerated particles have multiple applications in materials research, medicine, and the space industry. In contrast to classical particle accelerators, laser-driven acceleration at intensities greater than 1018 W/cm2, currently achieved at TW and PW laser facilities, allow for much larger electric field gradients at the laser focus point, several orders of magnitude higher than those found in conventional kilometer-sized accelerators. It has been demonstrated that target design becomes an important factor to consider in ultra-intense laser experiments. The energetic and spatial distribution of the accelerated particles strongly depends on the target configuration. Therefore, target engineering is one of the key approaches to optimizing energy transfer from the laser to the accelerated particles. This paper provides an overview of recent progress in 2D and 3D micro-structured solid targets, with an emphasis on fabrication procedures based on laser material processing. Recently, 3D laser lithography, which involves Two-Photon Absorption (TPA) effects in photopolymers, has been proposed as a technique for the high-resolution fabrication of 3D micro-structured targets. Additionally, laser surface nano-patterning followed by the replication of the patterns through molding, has been proposed and could become a cost-effective and reliable solution for intense laser experiments at high repetition rates. Recent works on numerical simulations have also been presented. Using particle-in-cell (PIC) simulation software, the importance of structured micro-target design in the energy absorption process of intense laser pulses—producing localized extreme temperatures and pressures—was demonstrated. Besides PIC simulations, the Finite-Difference Time-Domain (FDTD) numerical method offers the possibility to generate the specific data necessary for defining solid target material properties and designing their optical geometries with high accuracy. The prospects for the design and technological fabrication of 3D targets for ultra-intense laser facilities are also highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.