In the last three decades, we have witnessed incredible advances in laser technology and in the understanding of nonlinear laser-matter interactions, crowned recently by the award of the Nobel prize to Gérard Mourou and Donna Strickland [1,2]. It is now routinely possible to produce few-cycle femtosecond (1 fs = 10 −15 s) laser pulses in the visible and mid-infrared regimes [3,4]. By focusing such ultrashort laser pulses on gas or solid targets, possibly in a presence of nano-structures [5], the targets are subjected to an ultra-intense electric field, with peak field strengths approaching the binding field inside the atoms themselves. Such fields permit the exploration of the interaction between strong electromagnetic coherent radiation and an atomic or molecular system with unprecedented spatial and temporal resolution [6]. On one hand, HHG nowadays can be used to generate attosecond pulses in the extreme ultraviolet [7,8], or even in the soft X-ray regime [9]. Such pulses themselves may be used for dynamical spectroscopy of matter; despite carrying modest pulse energies, they exhibit excellent coherence properties [10,11]. Combined with femtosecond pulses they can also be used to extract information about the laser pulse electric field itself [12]. HHG sources therefore offer an important alternative to other sources of XUV and X-ray radiation: synchrotrons, free electron lasers, X-ray lasers, and laser plasma sources. Moreover, HHG pulses can provide information about the structure of the target atom, molecule or solid [13][14][15]. Of course, to decode such information from a highly nonlinear HHG signal is a challenge, and that is why a possibly perfect, and possibly "as analytical as possible" theoretical understanding of these processes is in high demand. Here is the first instance where SFA offers its basic services.Since electronic motion is governed by the waveform of the laser electric field, an important quantity to describe the electric field shape is the so-called absolute phase or carrier-envelope phase (CEP). Control over the CEP is paramount for extracting information about electron dynamics, and to retrieve structural information from atoms and molecules [13,16,17]. For instance, in HHG an electron is liberated from an atom or molecule through ionization, which occurs close to the maximum of the electric field. Within the oscillating field, the electron can thus accelerate along oscillating trajectories, which may result in recollision with the parent ion, roughly when the laser field approaches a zero value. Control over the CEP is particularly important for HHG, when targets are driven by laser pulses comprising only one or two optical cycles. In that situation the CEP determines the relevant electron trajectories, i.e. the CEP determines whether emission results in a single or in multiple attosecond bursts of radiation [16,18].The influence of the CEP on electron emission is also extremely important. It was demonstrated for instance in an anti-correlation experiment, in which the number of AT...