We construct exact solutions of the Schrödinger and Pauli equations for charged particles in the external field of the Redmond generalized configuration. We calculate the Green's functions of scalar and spinning particles in this field. Using them, we calculate the equations for the complex quasienergy of a bound particle (bound by a short-range potential) two different ways. In the example of an external constant electric field, we discuss the applicability domain of the obtained equations and the differences between their solutions.
The problem settingStudying the processes of the nonlinear ionization of atoms and their ions by a strong low-frequency electromagnetic radiation field, which began almost immediately after lasers were invented, is known to be one of the most rapidly developing branches of atomic physics [1]- [16]. It was based on the already known laws of the process of ionization by a constant electric field and of the one-photon ionization reaction. In particular, it was already shown in the first papers on this subject that in the case where the photon energy is below the ionization potential, the multiphoton ionization effects and the tunneling effects occur, highly similar to processes in a constant field. We mention that the theoretical study of multiphoton processes was based on nonperturbative methods from the very beginning. In this respect, we note that the basic results of the nonperturbative approach to studying nonlinear ionization by constant and variable fields were obtained based on a short-range atomic potential model. Such investigations are becoming increasingly relevant both because ever stronger electromagnetic fields are being created in laboratory conditions and because theoretical methods for studying quantum processes whose descriptions lie beyond the frames of the standard theory of perturbations in an external field are being improved. For instance, this pertains to studying nonlinear phenomena in strong fields of involved configurations, which has attracted much interest recently [8]- [12], [16]-[18]. In particular, the joint action of strong constant electric and magnetic fields on the process of atomic particle ionization was studied in detail [16]. The process of the interaction of laser radiation with a negative ion in a strong constant electric field was thoroughly analyzed in [17], [18]. The analogous nonlinear processes of ionization in a laser radiation field in the presence of a strong magnetic field 1 was studied in [8], [9], [11], [12].