Recently, a number of electron momentum spectroscopy measurements for the ionization of atoms and molecules have shown that the triple differential cross section (TDCS) has an unexpected higher intensity in a low momentum regime (Brunger M J, Braidwood S W, Mc Carthy I E and Weigold E 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L597, Hollebone B P, Neville J J, Zheng Y, Brion C E, Wang Y and Davidson E R 1995 Chem. Phys. 196 13, Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L223, Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201, Deng J K, et al 2001 J. Chem. Phys. 114 882, Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704). This surprising result is now called the turn-up effect. Our aim is to investigate such an effect by studying the case of the ionization of atomic hydrogen in an excited state using the 3C model (Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265) which is able to describe all the measured results of the single ionization of atomic hydrogen in its ground state for an incident energy beyond 200 eV. A comparison is also made of the findings of the present method with those of the plane wave impulse approximation and distorted wave models.