Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of energy in industrial processes is required to be efficient to reduce production costs as low as possible. In general, an industry relies heavily on three-phase induction motors. In its operation, the induction motor is operated in such a way that the energy usage is not maximized, so it is more efficient. To achieve this goal, the industry has used VFD (Variable Frequency Drive) to regulate the speed of induction motors according to the desired needs as well as to avoid "magnetic weak and saturation" conditions in the motor. This paper presents a Learning module for control and monitoring of 3-phase induction motor using Microcontroller embedded WIFI (ESP32), a VFD, and Modbus RTU protocol. The existence of this learning module will be helpful to control and view the motor parameters globally and easily. The presence of Esp32 provides convenience and flexibility for control designers to provide a cheaper control system, more speed process (2 processor), and be adaptive to future needs. Another advantage of this design model is that a user is given a choice of two user friendly applications, namely WhatsApp and Blynk IoT for giving users or students more enjoyable in learning control engineering. However, selecting the type of access application in an industrial environment must be done appropriately by considering network latency, stability, safety, feasibility, and the capability to overcome potential server failures. Regarding the use of VFD on a three-phase induction motor, an initial testing should be done to determine the maximum frequency that can be applied to achieve the motor's nominal current according to its nameplate (in this experiment, the maximum motor frequency is 40 Hz). Such testing is necessary to avoid more severe damage and can extend the motor's operational lifespan.
The use of energy in industrial processes is required to be efficient to reduce production costs as low as possible. In general, an industry relies heavily on three-phase induction motors. In its operation, the induction motor is operated in such a way that the energy usage is not maximized, so it is more efficient. To achieve this goal, the industry has used VFD (Variable Frequency Drive) to regulate the speed of induction motors according to the desired needs as well as to avoid "magnetic weak and saturation" conditions in the motor. This paper presents a Learning module for control and monitoring of 3-phase induction motor using Microcontroller embedded WIFI (ESP32), a VFD, and Modbus RTU protocol. The existence of this learning module will be helpful to control and view the motor parameters globally and easily. The presence of Esp32 provides convenience and flexibility for control designers to provide a cheaper control system, more speed process (2 processor), and be adaptive to future needs. Another advantage of this design model is that a user is given a choice of two user friendly applications, namely WhatsApp and Blynk IoT for giving users or students more enjoyable in learning control engineering. However, selecting the type of access application in an industrial environment must be done appropriately by considering network latency, stability, safety, feasibility, and the capability to overcome potential server failures. Regarding the use of VFD on a three-phase induction motor, an initial testing should be done to determine the maximum frequency that can be applied to achieve the motor's nominal current according to its nameplate (in this experiment, the maximum motor frequency is 40 Hz). Such testing is necessary to avoid more severe damage and can extend the motor's operational lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.