Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Environmental monitoring systems have gained prominence across diverse applications, necessitating the integration of cutting-edge technologies. This article comprehensively explores such a system, emphasizing the integration of a Raspberry Pi cluster with the BME680 environmental sensor within a Kubernetes framework. This study encompasses the technical aspects of hardware configuration and places a significant focus on security benchmarks and robustness validation. The environmental monitoring infrastructure discussed in this article delves into the intricacies of the Raspberry Pi cluster’s hardware setup, including considerations for scalability and redundancy. This research addresses critical security gaps in contemporary environmental monitoring systems, particularly vulnerabilities linked to IoT deployments. Amidst increasing threats, this study introduces a robust framework that integrates advanced security tools—HashiCorp (San Francisco, CA, USA) Vault v1.16 for dynamic secret management and OpenID Connect for authentication processes—to enhance applications and system integrity and resilience within the Kubernetes environment. The approach involves a multi-layered security architecture that fortifies the storage and management of credentials and ensures authenticated and authorized interactions within IoT networks. Furthermore, our research incorporates a series of security benchmark tests, including vulnerability scanning, penetration testing, and access control assessments. Additionally, this article addresses crucial aspects related to data management and analysis, detailing the methodologies employed for storing, processing, and deriving insights from the collected environmental data. It further explores the integration of the monitoring system with existing infrastructure and systems, facilitating seamless data sharing and interoperability and offering valuable insights into the system’s ability to withstand potential threats and vulnerabilities. The integration of Raspberry Pi clusters with BME680 environmental sensors within a Kubernetes-managed framework significantly enhances the scalability and security of IoT systems. This study quantifies the improvements, demonstrating at least a 30% enhancement in system responsiveness and a minimum 40% reduction in vulnerability exposures, as verified by extensive security benchmarks, including penetration testing. These advancements facilitate robust, scalable IoT deployments, with potential applications extending beyond environmental monitoring to include industrial and urban settings. The incorporation of dynamic secret management with HashiCorp Vault and secure authentication with OpenID Connect provides a blueprint for developing resilient IoT architectures capable of supporting high-security and high-availability applications. In conclusion, this article contributes to the expanding body of knowledge in IoT and environmental monitoring and establishes a strong foundation for future work. These outcomes suggest promising directions for further research in secure IoT applications and present practical implications for the deployment of secure and scalable IoT solutions in critical infrastructures.
Environmental monitoring systems have gained prominence across diverse applications, necessitating the integration of cutting-edge technologies. This article comprehensively explores such a system, emphasizing the integration of a Raspberry Pi cluster with the BME680 environmental sensor within a Kubernetes framework. This study encompasses the technical aspects of hardware configuration and places a significant focus on security benchmarks and robustness validation. The environmental monitoring infrastructure discussed in this article delves into the intricacies of the Raspberry Pi cluster’s hardware setup, including considerations for scalability and redundancy. This research addresses critical security gaps in contemporary environmental monitoring systems, particularly vulnerabilities linked to IoT deployments. Amidst increasing threats, this study introduces a robust framework that integrates advanced security tools—HashiCorp (San Francisco, CA, USA) Vault v1.16 for dynamic secret management and OpenID Connect for authentication processes—to enhance applications and system integrity and resilience within the Kubernetes environment. The approach involves a multi-layered security architecture that fortifies the storage and management of credentials and ensures authenticated and authorized interactions within IoT networks. Furthermore, our research incorporates a series of security benchmark tests, including vulnerability scanning, penetration testing, and access control assessments. Additionally, this article addresses crucial aspects related to data management and analysis, detailing the methodologies employed for storing, processing, and deriving insights from the collected environmental data. It further explores the integration of the monitoring system with existing infrastructure and systems, facilitating seamless data sharing and interoperability and offering valuable insights into the system’s ability to withstand potential threats and vulnerabilities. The integration of Raspberry Pi clusters with BME680 environmental sensors within a Kubernetes-managed framework significantly enhances the scalability and security of IoT systems. This study quantifies the improvements, demonstrating at least a 30% enhancement in system responsiveness and a minimum 40% reduction in vulnerability exposures, as verified by extensive security benchmarks, including penetration testing. These advancements facilitate robust, scalable IoT deployments, with potential applications extending beyond environmental monitoring to include industrial and urban settings. The incorporation of dynamic secret management with HashiCorp Vault and secure authentication with OpenID Connect provides a blueprint for developing resilient IoT architectures capable of supporting high-security and high-availability applications. In conclusion, this article contributes to the expanding body of knowledge in IoT and environmental monitoring and establishes a strong foundation for future work. These outcomes suggest promising directions for further research in secure IoT applications and present practical implications for the deployment of secure and scalable IoT solutions in critical infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.