Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2 CH2 PtBu2 )2 }], [RuCl{N(CHCHPtBu2 )(CH2 CH2 PtBu2 )}], and [RuCl{N(CHCHPtBu2 )2 }], in which the ruthenium(II) ions are in the extremely rare square-planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low-lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non-magnetic ground states arise for the two intermediate-spin complexes owing to unusually large zero-field splitting (D>+200 cm(-1) ). The change in ground state electronic configuration is attributed to tailored pincer ligand-to-metal π-donation within the PNP ligand series.