Background
Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a devastating clinical syndrome with high incidence and mortality rates. IRE1α-XBP1 pathway is one of the three major signaling axes of endoplasmic reticulum stress that is involved in inflammation, metabolism, and immunity. The role and potential mechanisms of IRE1α-XBP1 axis in ALI/ARDS has not well understood.
Methods
The ALI murine model was established by intratracheal administration of lipopolysaccharide (LPS). Hematoxylin and eosin (H&E) staining and analysis of bronchoalveolar lavage fluid (BALF) were used to evaluate degree of lung injury. Inflammatory responses were assessed by ELISA and RT-PCR. Apoptosis was evaluated using TUNEL staining and western blot. Moreover, western blot, immunohistochemistry, and immunofluorescence were applied to test expression of IRE1α, XBP1, NLRP3, TXNIP, IL-1β, ERK1/2 and NF-κB p65.
Results
The expression of IRE1α significantly increased after 24 h of LPS treatment. Inhibition of the IRE1α-XBP1 axis with 4µ8C notably improved LPS-induced lung injury and inflammatory infiltration, reduced the levels of IL-6, IL-1β, and TNF-α, and decreased cell apoptosis as well as the activation of the NLRP3 inflammasome. Besides, in LPS-stimulated Beas-2B cells, both 4µ8C and knockdown of XBP1 diminished the mRNA levels of IL-6 and IL-1B, inhibited cell apoptosis and reduced the protein levels of TXNIP, NLRP3 and secreted IL-1β. Mechanically, the phosphorylation and nuclear translocation of ERK1/2 and p65 were significantly suppressed by 4µ8C and XBP1 knockdown.
Conclusions
In summary, our findings suggest that IRE1α-XBP1 axis is crucial in the pathogenesis of ALI/ARDS, whose suppression could mitigate the pulmonary inflammatory response and cell apoptosis in ALI through the TXNIP/NLRP3 inflammasome and ERK/p65 signaling pathway. Our study may provide new evidence that IRE1α-XBP1 may be a promising therapeutic target for ALI/ARDS.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12931-024-03044-1.