From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.