High-activity catalysts in alkaline media are compelling for durable hydrogen evolution reaction (HER). Single-atom catalysts (SACs) provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However, the sluggish activity of SACs for water dissociation in alkaline media has extremely hampered advances in highly efficient hydrogen production. Herein, we developed a platinum SAC immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline HER catalyst. It was found that Pt SACs coupled with NiO/Ni heterostructure enable the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*), which efficiently tailors the water dissociation energy for accelerating alkaline HER. In particular, the dual active sites consisting of metallic Ni sites and O vacancies modified NiO sites near the interfaces of NiO/Ni in PtSA-NiO/Ni have preferred adsorption affinity for H* and OH* groups, respectively, which efficiently lowers the energy barrier of water dissociation of Volmer step. Moreover, anchoring Pt single atoms at the interfaces of NiO/Ni heterostructure induces more free electrons on Pt sites due to the elevated occupation of the Pt 5d orbital at the Fermi level and reaches a near-zero H binding energy (ΔGH*, 0.07 eV), which further promotes the H* conversion and H2 evolution. Further enhancement of alkaline HER performance was achieved by constructing PtSA-NiO/Ni nanosheets on the Ag nanowires to form a hierarchical three-dimensional (3D) morphology that provides abundant active sites and accessible channels for charge transfer and mass transport. Consequently, the fabricated PtSA-NiO/Ni catalyst displays extremely high alkaline HER performances with a quite high mass activity of 20.6 A mg-1 for Pt at the overpotential of 100 mV, which is 41 times greater than that of the commercial Pt/C catalyst, significantly outperforming the reported catalysts.