2011
DOI: 10.5121/ijcsit.2011.3506
|View full text |Cite
|
Sign up to set email alerts
|

IRIS Recognition Based On LBP and Combined LVQ Classifier

Abstract: Iris recognition is considered as one of the best biometric methods used for human identification and verification, this is because of its unique features that differ from one person to another, and its importance in the security field. This paper proposes an algorithm for iris recognition and classification using a system based on Local Binary Pattern and histogram properties as a statistical approaches for feature extraction , and Combined Learning Vector Quantization Classifier as Neural Network approach fo… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
1

Year Published

2013
2013
2022
2022

Publication Types

Select...
5
3
2

Relationship

0
10

Authors

Journals

citations
Cited by 23 publications
(9 citation statements)
references
References 13 publications
0
8
0
1
Order By: Relevance
“…Penelitian lain juga dilakukan oleh [4] dengan menggunakan ekstraksi fitur wavelet dan jaringan saraf tiruan Radial Basis Function (RBF) dengan hasil pengenalan iris mata menghasilkan akurasi pengenalan tertinggi sebesar 72,5%. Menurut penelitian yang telah dilakukan [5] tentang pengenalan iris menggunakan fitur LBP dan LVQ Classifier didapatkan tingkat identifikasi dengan hasil sebesar 99,87%. Metode LBP banyak digunakan sebagai ekstraksi fitur yang telah dilakukan seperti pada penelitian [6] [7] [8] [9].…”
Section: Pendahuluanunclassified
“…Penelitian lain juga dilakukan oleh [4] dengan menggunakan ekstraksi fitur wavelet dan jaringan saraf tiruan Radial Basis Function (RBF) dengan hasil pengenalan iris mata menghasilkan akurasi pengenalan tertinggi sebesar 72,5%. Menurut penelitian yang telah dilakukan [5] tentang pengenalan iris menggunakan fitur LBP dan LVQ Classifier didapatkan tingkat identifikasi dengan hasil sebesar 99,87%. Metode LBP banyak digunakan sebagai ekstraksi fitur yang telah dilakukan seperti pada penelitian [6] [7] [8] [9].…”
Section: Pendahuluanunclassified
“…The real challenge in this method is to determine the value of K, because as the K increases the computation complexity of the algorithm also increases. A neural network approach using Learning Vector Quantization (LVQ) is propounded for classifying iris by authors in [12]. This method has the supremacy of statistical and neural network characteristics to build the recognition system.…”
Section: Figure 1 Generic Block Diagram Of Iris Recognition Systemmentioning
confidence: 99%
“…Both the probabilistic and non probabilistic distance measures such as Bayes, Euclidean, KNearest Neighbor were used in [15] to classify iris pattern. In [8], [16], a modified competitive learning neural network (LVQ) was adopted for classification. Neural network was used for iris pattern classification in [17] - [19].…”
Section: Related Workmentioning
confidence: 99%