Functionalization of alkenes has been well investigated by chemists, thus it has been extensively applied in organic synthesis and industries. In the past few decades, transition-metal, such as palladium, rhodium, gold, iridium, copper and iron, catalyzed functionalization reactions of alkenes have been significantly developed and played vital roles in synthesis. The difunctionalization of alkenes are appealing as an important alternative to the traditional approaches for the construction of useful carbon centers, particularly carbon quaternary centers, which commonly existed as structural motifs in numerous natural products, pharmaceuticals, and biologically active molecules. This account will summarize our recent advances in the intermolecular difunctionalization of alkenes, and also highlight the scope and limitations as well as the mechanisms of these difunctionalization reactions. In general, in this account the difunctionalization of alkenes starting from dicarbofunctionalization will be discussed. Then carboheterofunctionalization of alkenes will be intensively reviewed, and diheterofunctionalization will also be highlighted.